Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
J Hazard Mater ; 469: 133886, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581107

RESUMEN

Oxidative desulfurization (ODS) emerges as a critical player in enhancing efficient fuel desulfurization and promoting sustainable clean energy. Metal-organic frameworks (MOFs) show great potential as ODS catalysts because of their exceptional porosity and versatility. This study explores the use of amorphous metal-organic frameworks (aMOFs), which combine MOFs' structural advantages with unique properties of amorphous materials, to enhance catalytic efficiency in ODS. Traditional methods for synthesizing MOFs rely on solvent-thermal or solvent-free methods, each with limitations in environmental impact or scalability. To address this, we introduce a novel strategy utilizing a small quantity of benzoic acid (BA) modifier to facilitate the solvent-free, one-pot, mechanical synthesis of amorphous zirconium terephthalate (GU-2BA-3h). The resulting GU-2BA-3h demonstrates exceptional ODS performance, efficiently removing 1000 ppm of dibenzothiophene (DBT) in just 6 min at 60 °C. Amorphous GU-2BA-3h features an expanded external surface area, increased acidic sites, and exceptional stability, resulting in a high turnover frequency (19.6 h-1) and outstanding catalytic activity (53.2 mmol g-1 h-1), establishing it as a highly efficient ODS catalyst. This remarkable performance arises from the formation of dangling carboxyl groups and active metal sites due to the competitive coordination of benzoic acid with the linker. Experimental evidence confirms that these carboxyl groups and exposed Zr-OH sites interact with oxidants, generating hydroxyl radicals that effectively eliminate sulfur-containing compounds. Furthermore, the methodology exhibits universality in constructing amorphous Zr-based MOFs, and provides an eco-friendly, cost-effective route for efficient ODS catalyst production.

2.
Nanomicro Lett ; 16(1): 166, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564024
3.
Environ Toxicol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567545

RESUMEN

Osteosarcoma is a malignant bone tumor affecting adolescents and children. No effective treatment is currently available. Asiatic acid (AA), a triterpenoid compound found in Centella asiatica, possesses anti-tumor, anti-inflammatory, and anti-oxidant properties in various types of tumor cells. This study aims to determine whether AA exerts antitumor effects in human osteosarcoma cells. Our results indicate that AA does not influence the viability, proliferative rate, or cell cycle phase of human osteosarcoma cells under non-toxic conditions. AA suppressed osteosarcoma cell migration and invasion by down-regulating matrix metalloproteinase 1 (MMP1) expression. Data in the TNMplot database suggested MMP1 expression was higher in osteosarcoma than in normal tissues, with associated clinical significance observed in osteosarcoma patients. Overexpression of MMP1 in osteosarcoma cells reversed the AA-induced suppression of cell migration and invasion. AA treatment decreased the expression of specificity protein 1 (Sp1), while Sp1 overexpression abolished the effect of AA on MMP1 expression and cell migration and invasion. AA inhibited AKT phosphorylation, and treatment with a PI3K inhibitor (wortmannin) increased the anti-invasive effect of AA on osteosarcoma cells via the p-AKT/Sp1/MMP1 axis. Thus, AA exhibits the potential for use as an anticancer drug against human osteosarcoma.

4.
Immunother Adv ; 4(1): ltae001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511087

RESUMEN

This phase 3, open-label, multidose study (NCT04346108) evaluated the pharmacokinetics, safety, tolerability, and efficacy of immunoglobulin subcutaneous (human) 20% solution (Ig20Gly) administered weekly and every 2 weeks in Japanese patients with primary immunodeficiency diseases (PIDs). The study was conducted at eight study sites in Japan and enrolled patients aged ≥2 years with PIDs treated using a stable intravenous immunoglobulin dose for ≥3 months prior to the study. Patients received intravenous immunoglobulin every 3 or 4 weeks at pre-study dose (200-600 mg/kg) for 13 weeks (Epoch 1), subcutaneous Ig20Gly (50-200 mg/kg) once weekly for 24 weeks (Epoch 2), and Ig20Gly (100-400 mg/kg) every 2 weeks for 12 weeks (Epoch 3). The primary endpoint was serum total immunoglobulin G (IgG) trough levels during Epochs 2 and 3. Overall, 17 patients were enrolled (median [range] age: 24 [5-69] years; 59% male) and participated in Epochs 1 and 2; seven patients entered Epoch 3. Serum total IgG trough levels were maintained at >8 g/l: geometric means (95% confidence intervals) at the end of Epochs 2 and 3 were 8.56 (8.03-9.12) g/l and 8.39 (7.89-8.91) g/l, respectively. Related treatment-emergent adverse events were all mild in severity; the most common treatment-emergent adverse events (excluding infections) in Epochs 2 and 3 were injection site swelling (24%) and injection site erythema (18%). This is the first trial to demonstrate the efficacy and favourable safety profile of 20% subcutaneous immunoglobulin administered every 2 weeks in adult and paediatric Japanese patients with PIDs.

5.
Environ Toxicol ; 39(5): 2961-2969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308464

RESUMEN

Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.


Asunto(s)
Chalconas , Neoplasias Endometriales , Chaperón BiP del Retículo Endoplásmico , Femenino , Humanos , Transducción de Señal , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Regulación hacia Arriba , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés del Retículo Endoplásmico , Factor de Transcripción CHOP/metabolismo
6.
ACS Omega ; 9(5): 6018-6024, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343920

RESUMEN

Ice clouds affect the energy balance of the atmosphere through absorption, reflection, and scattering of solar radiation. We have developed a new experimental technique to simultaneously measure thin ice film extinction and its thickness (about 0.06-0.21 µm) by combining Brewster angle cavity ring-down spectroscopy and quartz crystal microbalance. The ice film serves as a proxy for ice clouds. Thin ice films were formed by water vapor deposition on a silica surface at 258 K. The average extinction cross sections of ice films were determined to be about 6.6 × 10-23, 8.1 × 10-23, 5.3 × 10-23, 5.6 × 10-23, 5.2 × 10-23, 5.1 × 10-23, and 3.9 × 10-23 cm2/molecule at wavelengths of 290, 300, 310, 320, 330, 340, and 350 nm at 258 K, respectively. Atmospheric implications of the results are discussed.

7.
Heliyon ; 10(1): e23014, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163106

RESUMEN

The escalating environmental concerns and energy crisis caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) integrate various clean energy systems to enhance the powertrain efficiency. The energy management strategy (EMS) is plays a pivotal role for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement Learning (RL) has emerged as an effective methodology for EMS development, attracting continuous attention and research. However, a systematic analysis of the design elements of RL-based EMS is currently lacking. This paper addresses this gap by presenting a comprehensive analysis of current research on RL-based EMS (RL-EMS) and summarizing its design elements. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. It highlights the contributions of advanced algorithms to training effectiveness, provides a detailed analysis of perception and control schemes, classifies different reward function settings, and elucidates the roles of innovative training methods. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Potential development directions are suggested for implementing advanced artificial intelligence (AI) solutions in EMS.

8.
Methods Mol Biol ; 2741: 307-345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217661

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen accounting for high mortality rates among infected patients. Transcriptomic regulation by small RNAs (sRNAs) has been shown to regulate networks promoting antibiotic resistance and virulence in S. aureus. Yet, the biological role of most sRNAs during MRSA host infection remains unknown. To fill this gap, in collaboration with the lab of Jai Tree, we performed comprehensive RNA-RNA interactome analyses in MRSA using CLASH under conditions that mimic the host environment. Here we present a detailed version of this optimized CLASH (cross-linking, ligation, and sequencing of hybrids) protocol we recently developed, which has been tailored to explore the RNA interactome in S. aureus as well as other Gram-positive bacteria. Alongside, we introduce a compilation of helpful Python functions for analyzing folding energies of putative RNA-RNA interactions and streamlining sRNA and mRNA seed discovery in CLASH data. In the accompanying computational demonstration, we aim to establish a standardized strategy to evaluate the likelihood that observed chimeras arise from true RNA-RNA interactions.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , ARN Pequeño no Traducido , Humanos , ARN Bacteriano/genética , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Biología Computacional/métodos , ARN Mensajero/genética , Regulación Bacteriana de la Expresión Génica , ARN Pequeño no Traducido/genética
9.
J Mol Med (Berl) ; 102(2): 167-181, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38167731

RESUMEN

The pathological aggregation and misfolding of tau and amyloid-ß play a key role in Alzheimer's disease (AD). However, the underlying pathological mechanisms remain unclear. Emerging evidences indicate that liquid-liquid phase separation (LLPS) has great impacts on regulating human health and diseases, especially neurodegenerative diseases. A series of studies have revealed the significance of LLPS in AD. In this review, we summarize the latest progress of LLPS in AD, focusing on the impact of metal ions, small-molecule inhibitors, and proteinaceous partners on tau LLPS and aggregation, as well as toxic oligomerization, the role of LLPS on amyloid-ß (Aß) aggregation, and the cross-interactions between amyloidogenic proteins in AD. Eventually, the fundamental methods and techniques used in LLPS study are introduced. We expect to present readers a deeper understanding of the relationship between LLPS and AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Separación de Fases , Péptidos beta-Amiloides
10.
Adv Sci (Weinh) ; 11(13): e2307242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38247171

RESUMEN

N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Unión al ARN , Animales , Angiogénesis , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Evasión Inmune , Neoplasias Hepáticas/genética , Lisina , Factores de Transcripción/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ADN/metabolismo
11.
Sci Total Environ ; 915: 170073, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242466

RESUMEN

In this study, nitrogen-doped modified activated carbons were synthesized for H2S removal from Zhuxi activated carbon and 4,4'-bipyridine as raw material and nitrogen source, respectively. The synthesis strategy was hydrothermal treatment and subsequent NH3 annealing, and the formation and conversion patterns of the different N configurations were investigated. When the annealing temperatures were 500 °C and 600 °C, N-5 account for the majority. As the annealing temperature increased, the proportion of N-6 gradually increased. After the temperature increased to 1000 °C, N-5 and N-6 were converted to N-Q to a certain degree, while the amount of nitrogen doping decreased significantly. The sample H160-0.2-800 exhibited excellent H2S removal with a high sulfur capacity of up to 206.89 mg/g, significantly higher than that of the original activated carbon ZX1200 (67.56 mg/g). The reason for this is that the micropores (Vmic = 0.5155 cm3/g) and specific surface area (SBET = 1369.5 m2/g) of the modified activated carbon are more developed than those of the original activated carbon. A high nitrogen content (3.14 wt%) and N-6 configuration proportion (73.56 %) are significant reasons for the excellent adsorption properties. The mechanism of the catalytic oxidation was investigated. The introduction of surface nitrogen-containing functional groups alkalizes the activated carbon surface, enhancing the adsorption and dissociation of H2S and O2 and facilitating the formation of sulfur radicals and elemental sulfur.

12.
J Colloid Interface Sci ; 661: 123-138, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38295695

RESUMEN

Most cases of delayed wound healing are associated with bacterial biofilm infections due to high antibiotic resistance. To improve patient compliance and recovery rates, it is critical to develop minimally invasive and efficient methods to eliminate bacterial biofilms as an alternative to clinical debridement techniques. Herein, we develop a dissolving microneedle system containing Ag nanoparticles (AgNPs)-decorated silk fibroin microspheres (SFM-AgNPs) and antibiotics for synergistic treatment of bacterial biofilm infection. Silk fibroin microspheres (SFM) are controllably prepared in an incompatible system formed by a mixture of protein and carbohydrate solutions by using a mild all-aqueous phase method and serve as biological templates for the synthesis of AgNPs. The SFM-AgNPs exert dose- and time-dependent broad-spectrum antibacterial effects by inducing bacterial adhesion. The combination of SFM-AgNPs with antibiotics breaks the limitation of the antibacterial spectrum and achieves better efficacy with reduced antibiotic dosage. Using hyaluronic acid (HA) as the soluble matrix, the microneedle system containing SFM-AgNPs and anti-Gram-positive coccus drug (Mupirocin) inserts into the bacterial biofilms with sufficient strength, thereby effectively delivering the antibacterial agents and realizing good antibiofilm effect on Staphylococcus aureus-infected wounds. This work demonstrates the great potential for the development of novel therapeutic systems for eradicating bacterial biofilm infections.


Asunto(s)
Fibroínas , Nanopartículas del Metal , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Fibroínas/farmacología , Plata/farmacología , Microesferas , Bacterias , Biopelículas , Seda
13.
Small ; 20(4): e2304273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705459

RESUMEN

Considering the direct influence of substrate surface nature on perovskite (PVK) film growth, buried interfacial engineering is crucial to obtain ideal perovskite solar cells (PSCs). Herein, 1-(3-aminopropyl)-imidazole (API) is introduced at polytriarylamine (PTAA)/PVK interface to modulate the bottom property of PVK. First, the introduction of API improves the growth of PVK grains and reduces the Pb2+ defects and residual PbI2 present at the bottom of the film, contributing to the acquisition of high-quality PVK film. Besides, the presence of API can optimize the energy structure between PVK and PTAA, which facilitates the interfacial charge transfer. Density functional theory (DFT) reveals that the electron donor unit (R-C ═ N) of the API prefers to bind with Pb2+ traps at the PVK interface, while the formation of hydrogen bonds between the R-NH2 of API and I- strengthens the above binding ability. Consequently, the optimum API-treated inverted formamidinium-cesium (FA/Cs) PSCs yields a champion power conversion efficiency (PCE) of 22.02% and exhibited favorable stability.

14.
Cancer Lett ; 583: 216584, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38123014

RESUMEN

Magnolin (MGL), a compound derived from the magnolia plant, has inhibitory effects on tumor cell invasion and growth. His study aims to explore the antitumor effect and underlying molecular mechanism of MGL against human cervical cancer. We found that MGL inhibited the proliferation, migration, and invasiveness of cervical cancer cells in vitro and in vivo. The underlying mechanism was shown to involve MGL-induced inhibition of JNK/Sp1-mediated MMP15 transcription and translation. Overexpression of JNK/Sp1 resulted in significant restoration of MMP15 expression and the migration and invasion capabilities of MGL-treated cervical cancer cells. MGL modulated the cervical cancer microenvironment by inhibiting cell metastasis via targeting IL-10/IL-10 receptor B (IL-10RB) expression, thereby attenuating JNK/Sp1-mediated MMP15 expression. Analysis of the gut microbiota of mice fed MGL revealed a significant augmentation in Lachnospiraceae bacteria, known for their production of sodium butyrate. In vivo experiments also demonstrated synergistic inhibition of cervical cancer cell metastasis by MGL and sodium butyrate co-administration. Our study provides pioneering evidence of a novel mechanism by which MGL inhibits tumor growth and metastasis through the IL-10/IL-10RB targeting of the JNK/Sp1/MMP15 axis in human cervical cancer cells.


Asunto(s)
Lignanos , Microbiota , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Metaloproteinasa 15 de la Matriz , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Ácido Butírico/farmacología , Interleucina-10 , Microambiente Tumoral , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Factor de Transcripción Sp1/metabolismo
15.
Small ; 20(17): e2305434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38126941

RESUMEN

MAX phase combines both ceramic and metallic properties, which exhibits widespread application prospects. 2D MAX nanosheets have more abundant surface-active sites, being anticipated to improve the performance of surface-related applications. Herein, for the first time, 2D Nb2AlC nanosheets (NSs) as novel supports anchored with Ru catalysts for overall water splitting are developed. The optimized catalyst of Ru@Nb2AlC NSs exhibit Pt-comparable kinetics and superior catalytic activity toward hydrogen evolution reaction (HER) (low overpotentials of 61 and 169 mV at 10 and 100 mA cm-2, respectively) with excellent durability (5000 cycles or 80 h) in alkaline media. In particular, Ru@Nb2AlC NSs achieve a mass activity of ≈4.8 times larger than the commercial Pt/C (20 wt.%) catalyst. The post-oxidation resultant catalyst of RuO2@Nb2AlC NSs also exhibit boosting HER and oxygen evolution reaction activities and ≈100% Faraday efficiency for overall water splitting with a cell voltage of 1.61 V to achieve 10 mA cm-2. Therefore, the novel category of 2D MAX supports anchored with Ru nanocrystals offers a novel strategy for designing a wide range of MAX-supported metal catalysts for the renewable energy field.

16.
Parasit Vectors ; 16(1): 450, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066526

RESUMEN

BACKGROUND: The primary pathophysiological process of sepsis is to stimulate a massive release of inflammatory mediators to trigger systemic inflammatory response syndrome (SIRS), the major cause of multi-organ dysfunction and death. Like other helminths, Echinococcus granulosus induces host immunomodulation. We sought to determine whether E. granulosus cyst fluid (EgCF) displays a therapeutic effect on sepsis-induced inflammation and tissue damage in a mouse model. METHODS: The anti-inflammatory effects of EgCF were determined by in vitro culture with bone marrow-derived macrophages (BMDMs) and in vivo treatment of BALB/C mice with cecal ligation and puncture (CLP)-induced sepsis. The macrophage phenotypes were determined by flow cytometry, and the levels of cytokines in cell supernatants or in sera of mice were measured (ELISA). The therapeutic effect of EgCF on sepsis was evaluated by observing the survival rates of mice for 72 h after CLP, and the pathological injury to the liver, kidney, and lung was measured under a microscope. The expression of TLR-2/MyD88 in tissues was measured by western blot to determine whether TLR-2/MyD88 is involved in the sepsis-induced inflammatory signaling pathway. RESULTS: In vitro culture with BMDMs showed that EgCF promoted macrophage polarization to M2 type and inhibited lipopolysaccharide (LPS)-induced M1 macrophages. EgCF treatment provided significant therapeutic effects on CLP-induced sepsis in mice, with increased survival rates and alleviation of tissue injury. The EgCF conferred therapeutic efficacy was associated with upregulated anti-inflammatory cytokines (IL-10 and TGF-ß) and reduced pro-inflammatory cytokines (TNF-α and INF-γ). Treatment with EgCF induced Arg-1-expressed M2, and inhibited iNOS-expressed M1 macrophages. The expression of TLR-2 and MyD88 in EgCF-treated mice was reduced. CONCLUSIONS: The results demonstrated that EgCF confers a therapeutic effect on sepsis by inhibiting the production of pro-inflammatory cytokines and inducing regulatory cytokines. The anti-inflammatory effect of EgCF is carried out possibly through inducing macrophage polarization from pro-inflammatory M1 to regulatory M2 phenotype to reduce excessive inflammation of sepsis and subsequent multi-organ damage. The role of EgCF in regulating macrophage polarization may be achieved by inhibiting the TLR2/MyD88 signaling pathway.


Asunto(s)
Echinococcus granulosus , Sepsis , Ratones , Animales , Echinococcus granulosus/metabolismo , Líquido Quístico/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Ratones Endogámicos BALB C , Citocinas/metabolismo , Sepsis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Antiinflamatorios , Lipopolisacáridos
17.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139665

RESUMEN

The complexity inherent in navigating intricate traffic environments poses substantial hurdles for intelligent driving technology. The continual progress in mapping and sensor technologies has equipped vehicles with the capability to intricately perceive their exact position and the intricate interplay among surrounding traffic elements. Building upon this foundation, this paper introduces a deep reinforcement learning method to solve the decision-making and trajectory planning problem of intelligent vehicles. The method employs a deep learning framework for feature extraction, utilizing a grid map generated from a blend of static environmental markers such as road centerlines and lane demarcations, in addition to dynamic environmental cues including vehicle positions across varied lanes, all harmonized within the Frenet coordinate system. The grid map serves as the input for the state space, and the input for the action space comprises a vector encompassing lane change timing, velocity, and vertical displacement at the lane change endpoint. To optimize the action strategy, a reinforcement learning approach is employed. The feasibility, stability, and efficiency of the proposed method are substantiated via experiments conducted in the CARLA simulator across diverse driving scenarios, and the proposed method can increase the average success rate of lane change by 6.8% and 13.1% compared with the traditional planning control algorithm and the simple reinforcement learning method.

18.
Int J Biol Sci ; 19(16): 5218-5232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928273

RESUMEN

The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteína A Centromérica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Histonas , Neoplasias Hepáticas/metabolismo , Factor de Transcripción YY1/genética , Proteína A Centromérica/metabolismo
19.
iScience ; 26(11): 108126, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37915601

RESUMEN

The application of wearable intelligent systems toward human-computer interaction has received widespread attention. It is still desirable to conveniently promote health and monitor sports skills for disabled people. Here, a wireless intelligent sensing system (WISS) has been developed, which includes two ports of wearable flexible triboelectric nanogenerator (WF-TENG) sensing and an upper computer digital signal receiving intelligent processing. The WF-TENG sensing port is connected by the WF-TENG sensor and flexible printed circuit (FPC). Due to its flexibility, the WF-TENG sensing port can be freely adhered on the surface of human skin. The WISS can be applied to entertainment reaction training based on human-computer interaction, and to the technical judgment and analysis on wheelchair curling sport. This work provides new application opportunities for wearable devices in the fields of sports skills monitoring, sports assistive devices and health promotion for disabled people.

20.
Polymers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37631477

RESUMEN

Polymer-dispersed liquid crystal (PDLC) film is an active smart film penetrating the market due to its unique functionalities. These functional characteristics include switchable tint capabilities, which shield building residents from the sun's harmful ultraviolet (UV) rays, improve energy-saving features, and produce higher cost-efficiency. Although PDLC films are promising in several applications, there is still ambiguity on the performance of PDLC films. Particularly, the sizing effects' (such as film thickness and area) correlation with visible light transmission (VLT), ultraviolet rejection (UVR), infrared rejection (IRR), light intensity, current consumption, and apparent power consumption is not well understood. Therefore, this study investigated the sizing effects of PDLC films, including the thickness effect on VLT, UVR, IRR, light intensity, and area influence on current and apparent power consumptions. The varying applied voltage effect on the light transmittance of the PDLC film was also effectively demonstrated. A 0.1 mm PDLC film was successfully presented as a cost-efficient film with optimal parameters. Consequently, this study paves the way for a clearer understanding of PDLC films (behavior and sizing effects) in implementing economic PDLC films for large-scale adoption in commercial and residential premises.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...